Autophagy Is an Innate Mechanism Associated with Leprosy Polarization
نویسندگان
چکیده
Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages.
منابع مشابه
Autophagy in immunity against mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy.
The recognition of autophagy as an immune mechanism has been affirmed in recent years. One of the model systems that has helped in the development of our current understanding of how autophagy and more traditional immunity systems cooperate in defense against intracellular pathogens is macrophage infection with Mycobacterium tuberculosis. M. tuberculosis is a highly significant human pathogen t...
متن کاملT helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis.
Autophagy is a recently recognized immune effector mechanism against intracellular pathogens. The role of autophagy in innate immunity has been well established, but the extent of its regulation by the adaptive immune response is less well understood. The T helper 1 (Th1) cell cytokine IFN-gamma induces autophagy in macrophages to eliminate Mycobacterium tuberculosis. Here, we report that Th2 c...
متن کاملAntitumor Effects of HPV DNA Vaccine Adjuvanted with Beclin-1 as an Autophagy Inducer in a Mice Model
Background: There is a growing interest in development of an effective adjuvant system for improving DNA vaccines. Recent findings have confirmed an important role for autophagy in both innate and adaptive immunity. The current study was undertaken to determine the efficacy of autophagy induction with Beclin-1, as a novel adjuvant system, in mice immunized with human papilloma virus (HPV) DNA v...
متن کاملRole of autophagy associated with Helicobacter pylori CagA and VacA toxins in gastric cancer
Helicobacter pylori (H. pylori) is a gram-negative microaerophilic bacterium that has been introduced as a cause of mucosal inflammation and gastric cancer. The most important pathogenic factors are VacA and CagA, which are associated with increased disease severity in clinical strains. Autophagy is a protected lysosomal degradation pathway degrading cytoplasmic content and is important in host...
متن کاملToll-like receptors control autophagy.
Autophagy is a newly recognized innate defense mechanism, acting as a cell-autonomous system for elimination of intracellular pathogens. The signals and signalling pathways inducing autophagy in response to pathogen invasion are presently not known. Here we show that autophagy is controlled by recognizing conserved pathogen-associated molecular patterns (PAMPs). We screened a PAMP library for e...
متن کامل